
Building Blocks for Self-Organizing Software
Development Teams: A Framework Model and

Empirical Pilot Study
Henri Karhatsu, Marko Ikonen, Petri Kettunen, Fabian Fagerholm and Pekka Abrahamsson

Department of Computer Science
P. O. Box 68, FIN-00014 University of Helsinki, Finland

{firstname.lastname}@cs.helsinki.fi

Abstract—Self-organization is one of the foundations of ag-
ile software development. Many positive outcomes have been
associated with having teams operating at high levels of self-
organization. This paper reports the results of a pilot study
which reviews the existing body of empirical literature and
presents a novel model for building self-organizing teams. The
model is empirically validated in two case studies performed in
Software Factory, an academic but close-to-industry experimental
R&D laboratory. It is shown that autonomy together with
communication and collaboration are the major components for
building self-organizing software development teams.

Index Terms—self-organizing teams, self-organization, agile
software development

I. INTRODUCTION

There are many claimed advantages that self-organizing
teams may bring to organizations [1]–[6]. Positive outcomes
are often related to performance effectiveness, member atti-
tudes, and behavior [2]. Self-organizing teams can react to
problems quickly since the decision-making is close to the
problem [7]. Instead of waiting for a manager’s approval, the
team has the authority to take necessary actions by itself [8].

A significant amount of self-organization literature exists.
The history of self-organizing teams in the literature goes
back to the 1950s when Trist et al. examined self-regulated
coal miners [7]. Since then the management literature has
addressed this area a lot using a number of different con-
cepts and terms such as empowered teams, autonomous work
groups, semi-autonomous work groups, self-managing teams,
self-determining teams, self-designing teams, crews, cross-
functional teams, quality circles, project teams, task forces,
emergency response teams, and committees [3].

Self-organization has emerged as an important area of study
also within software engineering management, in particular
with agile methods such as Scrum. However, despite the often
claimed benefits, there is a shortage of conclusive empiri-
cal studies in the area. Moe et al. [8], [9] have proposed
a framework for measuring self-organizing teams based on
an action research study in industrial settings. Hoda [10]
interviewed practitioners and identified roles that are taken
by self-organizing in action.

This paper aims at contributing to the growing body of
empirical understanding in the area on how to build a self-
organizing software development team. A novel model for

building self-organizing teams is constructed and empirically
tested. We present results from two case studies performed
in a close-to-industry experimental R&D laboratory called
Software Factory [11]. Software Factory facilities are designed
to support such empirical studies. The results show that
autonomy together with communication and collaboration are
the major components for building a self-organizing software
development team.

The rest of the paper is composed as follows: In Section II,
the research model is created based on related work in
the reference disciplines. Section III presents the empirical
research design which is followed by the presentation of the
case study results in Section IV. The conclusions are identified
and discussed in Section V. The paper is summarized with
Section VI addressing the limitations and identifying future
research needs.

II. RESEARCH MODEL

In this section, a research model is created based on existing
literature. Subsection II-A examines the characteristics of
self-organizing teams. Subsection II-B describes how agile
software development methods support self-organization. The
resulting research model is presented in Subsection II-C.

A. Self-organizing Teams

Several definitions for work groups and teams exist [3].
When we refer to a self-organizing team in this paper, we use
the definition of an autonomous work group by Guzzo and
Dickson [3]: “Autonomous work groups are teams of employ-
ees who typically perform highly related or interdependent
jobs, who are identified and identifiable as a social unit in
an organization, and who are given significant authority and
responsibility for many aspects of their work, such as planning,
scheduling, assigning tasks to members, and making decisions
with economic consequences (usually up to a specific limited
value).”

In general, the related literature suggests that self-organizing
teams bring many advantages for the organizations. One of
the key benefits is performance effectiveness which means,
for example, better productivity, lower response time, better
quality and customer satisfaction, and more innovations [2].
Customer satisfaction is reported in many studies [1], [4],



[5], [12]. The main reason for the effectiveness is that self-
organizing teams can react to problems quickly since the
decision making is close to the problem [7], [8]. Instead of
waiting for a manager’s acceptance, the team has authority to
take necessary actions.

Other advantages are positive changes in team member
attitudes, including increased job satisfaction, stronger com-
mitment to the organization, and trust toward management [2].
These are suggested in many studies [3]–[5], [8]. One reason
for the attitude changes is that self-organizing teams stimulate
participation and commitment, which make the employees care
more for their work [13], [14]. Moreover, self-organization
causes positive behavioral outcomes containing the level of
absenteeism, turnover, and safety [2]. This is reported in many
studies as well [3].

However, some research results are contradictory [3], [7].
E.g., some results indicate no connection between empow-
erment and success or that the project performance is not
increased [15]. This means that self-organization is not a
panacea, and just calling a team self-organizing does not auto-
matically translate into better performance. The organizational
context like the reward system, leadership, training, available
resources, and the structure of the organization influence how
teams can self-organize and perform [2], [7].

The contradictory research results indicate a need to better
understand what makes a self-organizing team successful [13].
Moe et al. suggest five characteristics that are important
for self-organizing teams: autonomy, team orientation, shared
leadership, redundancy, and learning [9].

Autonomy refers to the authority and responsibility that
a team has in their work [3]. It is a significant factor for
team effectiveness [16]. A team must have a real possibility
to influence relevant matters; otherwise self-organization is
more symbolic than real [7]. On the other hand, a team should
not be left completely alone [17]. Instead, while management
should give a team substantial freedom, it should maintain
subtle control and have regular checkpoints [17].

Three levels of autonomy are external, internal, and in-
dividual [14], [18]. The external refers to the degree that
the people outside of a team influence the team’s decisions
[18]. Moreover, it sets the decision-making boundaries for the
team. Meanwhile, internal autonomy defines how the work is
organized inside the team [18]. The team may have substantial
power to make decisions while some individuals have none
[19]. Great care should be taken to make sure that there really
is internal autonomy instead of, for example, team leader
autonomy [18]. Finally, individual autonomy, on its part, tells
how much an individual has freedom to decide about his or
her own work processes [16].

Team orientation tells how well the goals of a team and the
individuals meet [9]. Many researchers suggest that individuals
should emphasize the team goals over their own [4], [20],
[21]. On one hand, losing individual autonomy is harmful for
the individual’s motivation [22]. On the other hand, too much
individual autonomy is a threat for team work [16].

Shared leadership means that the leadership role should

be given to those who have the best skills and knowledge to
decide about the particular issue [23]. This is in contrast to
centralized decision making where one person makes all the
decisions [18]. Shared leadership thus requires that the team
has good internal autonomy. In addition, all the team members
should be involved in decision making [9].

Redundancy is required in self-organizing teams so that
the team members are able to do each other’s work [9], [24].
In teamwork literature, this is often called backup behavior
[14]. In practice, redundancy requires that the team members
know what the others are doing and that they also have
complementary skills [17], [24]. The idea of redundancy is
opposite to individualism where each person specializes in
some area of work. Traditionally, this has been seen as an
effective way to organize work but it can be dangerous for an
organization since the flexibility of teams deteriorates and the
teams become more vulnerable [8].

Learning is needed in a self-organizing team for many
reasons. Redundancy requires that the team members learn
from each other [4]. Shared leadership requires a mechanism
for learning since otherwise team members are not able to
make decisions together [25]. Moreover, the team cannot make
correct decisions in a changing environment without learning
[26]. In addition, team orientation relates to learning. If an
individual’s success is determined by the team’s success, there
needs to be cooperative learning [4].

In addition to the five core elements discussed above (au-
tonomy, team orientation, shared leadership, redundancy, and
learning), communication and collaboration (C&C) play an
important role. Communication means sending and receiving
information, collaboration means actively working together
to deliver a work product or make a decision [27]. C&C is
important for many reasons. Shared leadership requires that all
the team members actively participate in decision making [9].
One way to enhance team orientation is to increase information
sharing [28]. Moreover, redundancy and learning require C&C
as well. Autonomy cannot work properly without communi-
cation. As autonomy is based on trust from management [17],
the team has to somehow communicate their progress to the
management so that the trust does not gradually disappear.

B. Agile Software Practices Supporting Self-organization

Subsection II-A examined six general elements that are
considered necessary for building self-organization in a team.
However, it did not specify how these elements can be realized
in practice in software development teams.

Agile software development teams are characterized by self-
organization [27]. Following that idea, this subsection explores
how agile software methods support self-organization. The
methods under discussion are Extreme Programming (XP),
Scrum, Crystal family of methodologies, Feature Driven De-
velopment (FDD), Dynamic Systems Development Method
(DSDM), Adaptive Software Development (ASD), Agile Mod-
eling (AM), and lean software development (lean).

Communication and collaboration are at the heart of
agile software development. As the Agile Manifesto states,



“individuals and interactions over processes and tools” and
“customer collaboration over contract negotiation” [29]. One
aspect in C&C is customer cooperation. It is emphasized in
XP due to the on-site customer practice [30]. Crystal suggests
having user viewings, ASD customer focus group reviews and
JAD sessions together with the customer [26], [31].

Another aspect is C&C inside the team. This is supported
by the concepts of pair programming and open workspace
in XP, and that of co-location in Crystal Clear [30], [31].
Scrum has its sprint planning meetings, daily scrum, and
retrospectives [32], [33]. The AM practices model with others,
display models publicly, and model to communicate should
enhance C&C [34]. Moreover, Scrum board and Kanban board
(in lean) are examples of information radiators that enhance
communication by increasing the awareness and certainty
regarding project activity [35].

One viewpoint to C&C is its continuity. For instance,
daily Scrum meetings are held every day, and each iteration
should have some kind of customer and team review. Co-
location enables the team to talk face-to-face anytime and
pair programming makes the communication between two
developers inevitable. Also use of information radiators reveals
project status to the team all the time.

Team autonomy requires that the team is authorized. This
is supported in many agile methods. Scrum teams are con-
sidered self-organizing teams which have substantial decision
authority and responsibility like planning, scheduling, work
allocation, and operational decision making [19]. Likewise,
empowering the team is a DSDM practice and a lean principle
[31], [36]. Preserving autonomy is, however, not self-evident
[20]. For this reason, Scrum Master in Scrum and project
manager in FDD should protect the autonomy [20], [31].

Team orientation can be supported with increasing in-
formation sharing and participatory goal setting [28]. C&C
practices listed above support the first one, and XP (planning
game), Scrum (sprint planning meeting), and Crystal (staging)
encourage to the latter [30], [31], [33]. Since team orientation
is closely related to goal setting, priorities are important. In
Scrum, the product backlog is re-prioritized at least before
every iteration by the product owner [33].

On the general level it is acknowledged that agile soft-
ware organizations need leadership-and-collaboration instead
of command-and-control management [27]. This relates to
shared leadership. However, agile methods do not provide
many practices that actually would support this but rather
emphasize the idea of shared leadership on an abstract level,
like the leadership practice in lean software development does
[36]. Nevertheless, since shared leadership requires that a team
must have the right people with mission-critical knowledge,
skills, and abilities [23], the concept of cross-functional teams
in Scrum and Crystal [31], [33] supports shared leadership.

Redundancy can be supported with practices that increase
the team members’ ability to do other team members’ tasks.
Collective ownership in XP and AM [31], [34] is a way
to share responsibility of work and that way increase the
ability. In addition, if the team agrees on uniformity for

example in respect to code, they can more easily continue
the work done by the others. Practices supporting this are the
coding standards in XP, applying modeling standards in AM,
and notation standards, design conventions and formatting
standards in Crystal Orange [30], [31], [34]. Moreover, all the
practices supporting C&C support redundancy as well since
that way team members get better understanding of others’
work.

Also learning, for example from customers, leans on C&C.
In addition, short iterations give the team a possibility to learn
about the customer domain and the system to be developed
[36]. They are important basically in all agile methods as
incremental development with rapid cycles is one of the char-
acteristics of the agile methods [31]. Learning during iterations
can be supported with end-of-iteration review sessions like
sprint reviews and retrospectives in Scrum, user viewings in
Crystal, and JAD sessions and customer focus group reviews
in ASD [26], [31]–[33].

Learning requires feedback [25], which is emphasized in
ASD, XP, and lean software development [26], [30], [36].
One way to provide feedback for team members are the
design, code, test, or plan reviews [26]. On the technical
level automated regression testing, continuous integration, and
regular builds in XP, Crystal, and FDD provide feedback for
developers [30], [31]. Finally, tracking progress gives the team
a possibility to learn. XP has a special role called tracker for
this [30]. Similarly Crystal encourages progress tracking and
monitoring [31].

C. A Model for Building Self-organizing Software Develop-
ment Team

Based on the previous subsections, we propose a framework
model for building a self-organizing software development
team (Figure 1). The model contains the six general elements
of self-organization (Subsection II-A) and agile practices that
support each element (Subsection II-B).

Building a self-organizing 
softw

are developm
ent team

Intimate and open customer relationship.
Work together in open workspace.

Share information daily.
Visualize progress.

Communication & Collaboration
Authorize the team.

Have someone to protect
the team.

Autonomy

Share responsibility of work.
Agree on uniformity.

Redundancy

Have short iterations.
Have end-of-iteration review sessions.

Give continuous feedback.
Track progress.

Learning
Manage with

lead-and-collaborate principle.
Have cross-functional teams.

Shared leadership

Let the team participate in
iteration planning and goal setting.

Prioritize clearly.

Team orientation

Fig. 1. A framework for building a self-organizing software development
team. The arrow indicates the building direction; foundational elements must
be in place first.

The model contains two foundational elements: autonomy
and C&C. Without autonomy self-organization is symbolic
only [7] meaning that if a team has no autonomy, it cannot



really act like a self-organizing work unit. On the other hand,
C&C is important for the other elements, as described in
Sections II-A and II-B.

The additional four elements of the model are shared
leadership, learning, team orientation, and redundancy. A team
should aim at these as well in order to become self-organizing.

The different agile practices are aggregated. The “end-of-
iteration review sessions”, for example, includes reflection
workshops, retrospectives, and postmortems.

The proposed model does not prescribe fixed relationships
between the elements. However, their inter-dependencies are
supposed to be as explained in Sections II-A and II-B. The
general idea is that the foundational elements are the most
important in order to build a self-organizing software devel-
opment team.

III. EMPIRICAL STUDY DESIGN

The model presented in Section II-C and elaborated in the
whole of Section II is based on selected parts of the literature,
combined with observations from two project cases. The
following explains the case study environment and approach.

Software Factory is a new software engineering research and
education setting at the University of Helsinki [11]. It is basi-
cally an advanced R&D laboratory environment for conducting
software business projects. The concept comprises the physical
laboratory environment coupled with a unique operational
model. The laboratory room is equipped with sophisticated
computer and monitoring equipment (e.g., smart boards). Such
high-end facilities make it possible not only to conduct the
actual software engineering work in a modern fashion, but also
to collect research data automatically (e.g., logs). In particular,
the facility allows rich insight into the human-related aspects
of software development [37]. The Department of Computer
Science hosts an initial reference implementation. This facility
has been operating since the beginning of 2010.

Software Factory continuously runs projects in seven-week
cycles. In this study, the first author conducted participatory
research in two web application development projects acting
as a team leader and coach, and interviewed project team
members and customer representatives. He had access to all
project information and collaborated directly with customer
representatives and fellow team members. The co-authors also
observed the project and participated but to a much lesser
degree.

In total ten team members and two customer representatives
were interviewed. The interviews were thematic [38]. The
interviewer concentrated on the same themes but the questions
and details could vary between subjects. The themes were the
self-organization dimensions described in Section II-A. The in-
terviews were recorded and transcribed. Transcribed passages
relevant to self-organization dimensions were analyzed. The
transcriptions were also used to assess the project performance
outcome as interpreted by the customer representative.

The findings are grounded primarily in the observations
and perceptions of the first author. The qualitative interpreta-
tion of project goals, decision-making, group dynamics, team

structure, and team member performance in different areas
are dependent on the internal constructs of the observer. The
degree of achievement in different dimensions is compared to
the existing literature on self-organization.

The study design allows extraction of actual practices on
project team self-organization. However, while the interview
technique highlights the desired dimensions of study, it might
also mask aspects of self-organization that has not been
presented in the literature. This limitation is acknowledged
[38].

IV. RESULTS

This section evaluates the research model (Fig. 1) with the
empirical data. All the elements and practices are covered. The
section contains quotes from the interviews. The capital ‘C’
refers to a customer and ‘TM’ to a team member. The trailing
number indicates the project (e.g., ‘C1’). The letters from A
to F designate the team members, respectively.

The research model (Fig. 1) suggests that in order to support
autonomy, the teams should be authorized and there should
be someone protecting the autonomy. In the case studies both
teams were very much on their own. Management intervening
lacked in daily work and for that reason the teams did not
need anyone to protect autonomy.

There was, however, a difference in how the teams utilized
their autonomy. Both teams had customer demos once a week
where achievements from the previous week were presented
and the next week tasks discussed. The first team wanted to
keep discussion on a high level, which was appreciated by the
customer:

“I liked that when I started to talk things in too tech-
nical level, someone in the team said that ‘sounds
technical, we will get back to this in a week’.” [C1]

On the other hand, the discussion in the second project
demos went often to quite a detailed level:

“They [the questions] were mostly technical but not
big questions. - - Well, it was not this question but
‘do we need this green button or red button?’ type
of question.” [C2]

The other basic building block of the research model is com-
munication and collaboration. The four practices suggested
by the framework are intimate and open customer relationship,
work together in open workspace, share information daily, and
visualize progress.

Both teams had certain problems with customer communi-
cation. The first team complained that they would have needed
more mutual time, which was also recognized by the customer:

“I think at some stage when neither [of the cus-
tomers] was present - - there was this period when
we had to a bit longer do like ‘I guess it goes like
this’. - - The customer doesn’t have to be there all
the time but somewhere comes a limit that when
he’s not enough there, you have to start guessing.”
[TM1F]



“When in the last week I was all the time present
and visited there many times a day, many things that
would have waited still a few days for the traditional
customer demo, were solved there.” [C1]

In the second project, the customer made himself available,
but during the first half of the project the team did not use
him much. The problem was identified in a retrospective
meeting when a team member complained about unclear
requirements. After that, communication with the customer
increased. However, there was also another problem. When
the team had problems in understanding what the customer is
saying, they could not admit it:

“Perhaps we didn’t manage to say that it is not clear.
We just said together with the other team members
that ‘yeah, yeah’. It probably slowed down.” [TM2B]

The empirical evidence emphasizes the importance of an in-
timate and open customer relationship. As there were problems
with that, both teams had difficulties in learning and becoming
more self-organized.

On the other hand, the other practices proposed by
the model were followed. Both teams worked in an open
workspace, which had clear positive effects. For example, the
team members easily got help from the others. The teams also
had useful daily stand-up meetings:

“And I think there were many times [in the daily
meetings] that someone said: ‘I am going to do
this’. And then someone else said: ‘Would you rather
do this since it is more immediate or important?”’
[TM1C]

The comment of the team member shows how daily infor-
mation sharing supports team orientation. The daily meetings
also supported redundancy since the team members awareness
of others’ tasks increased in the daily meetings.

Both teams used Kanban boards to visualize the project
status. This was useful for learning since the boards revealed
important information. In the first project, the team leader
realized that it is important to get the board rather clean by
the demo so that it is faster to react to the changing needs of
the customer. In the second project, the board helped the team
to see that the tasks get stuck in the code review stage and by
changing the work-in-process limit on the board the situation
got better.

According to the research model shared leadership requires
that a team is managed with lead-and-collaborate principle and
the team should be cross-functional. The empirical evidence
shows that the first supports shared leadership and the lack of
the second deteriorates it.

Neither of the teams had a preappointed leader. Instead, the
most experienced persons took that role by themselves. The
first author took the leader role in the first team.

The roles were not traditional manager roles. Leadership
was rather shared among certain people. On the other hand,
some team members were very inexperienced and could not
take part in decision making:

“I think the biggest single thing [to be decided] was
the definition-of-done. - - It was so that the most
experienced of us were discussing about it and the
others quietly accepted it since they didn’t have any
better ideas.” [TM1E]
“I feel that me, [TM2D], and [a third team member]
were somehow the driving force there. The others
perhaps did not have technical knowledge or courage
to make so much decisions.” [TM2B]

According to the research model, learning can be supported
with short iterations, end-of-iteration review sessions, contin-
uous feedback, and progress tracking.

The two first practices were followed since both teams
had one week iterations with customer demos in between. In
addition, the teams had retrospectives. All these were seen as
very useful. In the first project, one week iterations helped
both the team and the customers to learn:

“We had this practice, these customer demos, that
became critical communication points. - - What is
the direction and have they done what critically was
supposed to do? - - In this kind of initiative the goal
is crystal clear but still extremely movable.” [C1]
“I think they [the demos] were useful. You got to
know the new direction.” [TM1F]

Also the retrospectives helped the teams to learn and im-
prove their processes, as was already noted above. In addition:

“In the retros we noticed that we are not doing some
things well enough. So let’s try to get better testing
routine for everyone.” [TM1D]
“People could tell their own viewpoints of what
had happened. It opened my own eyes. When you
thought these things that you are uncertain about,
you could see them from the others’ perspective.”
[TM2B]
“Initially no-one was happy with the Kanban
[board], and that we got to know in the first retro.”
[TM2C]

However, it is noteworthy to state that the second team
was initially unwilling to hold retrospectives. The coach of
the team explained to them why it is good to have one, and
afterwards the team appreciated the meeting very much.

Both teams had a code review stage in their processes. The
first team considered it a very good source of feedback but
the second team had problems with code reviews. The second
comment shows how important good feedback is for learning:

“I think the code review stage was extremely good
because you got immediate feedback.” [TM1C]
“In some cases it was that people had done it like
it was not supposed to be done. If it was somewhat
understandable, I let it pass. Maybe I should have
been more rigorous especially in the beginning of
the project. It would have perhaps reduced at later
stage that there will be more of that [bad code]. - -
I was too kind perhaps.” [TM2D]



Neither of the teams tracked their progress as the research
model would suggest. It is difficult to say based on the
empirical data how this affected the teams’ performance.

The research model suggests that team orientation can
be supported with two practices: let the team participate in
iteration planning and goal setting, and prioritize clearly. The
usefulness of both practices can be seen in the case studies.

Iterations were planned and tasks prioritized in the customer
demos. Most of the team members in both teams participated
in the demos, which gave them good insight of the next
iteration tasks. On the other hand, when one team member
could not participate, he commented:

“I had such a feeling that it would have been useful
to be in the demos. I would have known better what
is happening in the project. - - Maybe the biggest
disadvantage was when I did code review or QA for
others. I didn’t have a clear vision if they were doing
the right thing.” [TM1E]

The demos were important also for prioritization. The first
team used to always ask from the customer what are the most
important tasks for the next week. The customer liked this
approach:

“The team leader asked that on what they should
concentrate during the next week. - - I felt it was
actually a good thing to do. It makes you to sum-
marize the thematics into a couple of sentences.”
[C1]

After a demo, it was very clear what is important to do.
This gave the team members a possibility to choose tasks on
their own:

“Everyone individually, they are taking tasks from
the ticketing system. And they were just checking
what are the priorities of the tasks and they are
assigning these tasks to themselves.” [TM1A]

The team members liked the freedom of choosing tasks
but at the same time the clear prioritization helped them to
maintain team orientation.

The last element of the research model is redundancy with
shared responsibility of work and agreement on uniformity
practices. In the first team, the first practice was followed.
Different team members contributed to the same parts of the
system and code review was done by many people. In the
second team, the situation was however different:

“There were many people, majority of people I
should say, that they were able to work on the task
what I had been working.” [TM1B]
“It [transferring a task to someone else] probably
wouldn’t be easy because I did pretty much, and
everyone else as well, individually. Even though we
sometimes asked advice and discussed, the imple-
mentation was done alone.” [TM2B]
“My code review was done by [TM2B] mostly.”
[TM2A]
“It was a bit that I was ready to review others’ code
but I felt that [TM2D] was the only one who wanted

to check my code.” [TM2B]
Since the responsibility of work was not well shared in

the second project, certain people were burdened more than
the others. On the other hand, the vulnerability of the team
did not become visible since the project was so short (seven
weeks). It is, however, probable that if the project would have
lasted longer, the lack of redundancy would have affected self-
organization even more.

Both teams agreed on certain uniformity practices like
coding conventions. However, there is not enough empirical
data available to determine what kind of effect this had on
redundancy.

As a conclusion, the pilot case study supports the research
model in general. Both projects ended with favorable customer
assessments with respect to the project outcomes. Regardless,
the role of certain practices (e.g., tracking project progress)
requires more evidence.

V. DISCUSSION

The proposed research model (Fig. 1) leans on the five
characteristics of a self-organizing team suggested by Moe
et al. [9] and adds two new components: C&C and agile
practices. Based on the empirical evidence (Section IV),
the research model seems to provides a good framework to
understand how self-organizing software development teams
can be built.

The two case projects differed in the degree that they
could reap benefits from their autonomy. The crucial factor
appears to have been the difference of leadership. However, the
question is not about vertical leadership which was not needed
e.g. for task specification and identifying team members roles
as Pearce [23] suggests. Instead, leadership in general is
important and it can be shared.

According to the literature, team members should emphasize
the team goals over their own goals [4], [20], [35], which may
be in contradiction with individual autonomy [14], [19]. The
empirical data show how these two can be combined with clear
prioritization and individuals’ freedom of choosing tasks.

Constantly sharing information and switching responsibil-
ities in tasks in order to avoid specialism and individualism
was recognized in the case studies. All of these conform to the
literature [8], [14], [20]. Similarly, the importance of honest
and continuous feedback supports the existing literature [36].

The case studies emphasized the importance of good cus-
tomer communication in software development projects. If the
customer is not available or if the team and the customer
are not able to discuss openly, the team cannot get the
feedback needed. From the self-organization point of view, this
deteriorates learning in the team. The importance of customer
communication is recognized e.g. in XP that suggests co-
located customer [30]. If this is not possible, the team should
find other ways to communicate effectively with the customer.

The research model is based on agile practices and how they
support the elements of a self-organizing team. The empirical
data (Section IV) provided initial evidence that the research
model can explain how self-organization can be built. This has



two implications. First, the team should have an understanding
of agile practices. One way is to use a coach like in the second
project. An example of how the coach intervened was the
argumentation of the importance of retrospectives (see above).
Before the first retrospective, the team was not reluctant to
have it but afterwards the team considered it very useful.
Second, although e.g. Scrum requires self-organizing teams
but does not clearly explain how they can be built [39], the
creation of self-organization seems to be possible by using a
combination of certain agile practices.

The literature claims that transformation of a work group
into a self-organizing work team takes years [5]. The case
studies were very short projects (seven weeks) but rather high
level of self-organization was reached at least in the first
project. Moreover, the customer was satisfied with the project
results. On the other hand, the empirical data showed that self-
organization does not just emerge without conscious effort.
Interviewees expressed in numerous comments how they had
to adjust to others and take bearings on each other as they
solved project challenges and tried to find their way forward.
This is something that has to be done constantly and further
research is needed in order to test the research model in longer
projects. Nevertheless, the pilot study indicates that building a
self-organizing software development team is possible, at least
to some extent, in a very short period of time.

VI. CONCLUSIONS

This paper proposed a framework model for building self-
organizing software teams. The model presented in Sec-
tion II-C is based on selected parts of the related organiza-
tional management and agile software development literature,
supported with empirical observations from the two project
cases.

The main conclusions of the model construct and empir-
ical evidence are that team autonomy together with efficient
communication and collaboration are the foundational building
elements for effective self-organization. These are also the key
tenets underlying many agile software development methods.

That said, this investigation opens up new avenues for fur-
ther research: How does the project context factors influence
the self-organization model space? For instance, is the project
team authorized to make all the decisions related to software
requirements? Can the proposed model be used to actively
“build” self-organizing teams (possibly even in a very short
period of time) and if so, what are the factors of such a
building activity? How does the starting point of the team,
such as member selection and experience, moderate the self-
organization behavior and resulting performance? How does
cultural background influence self-organization, and how do
multicultural self-organizing teams get built? These are some
candidates for directions that could be further explored.

In all, the project performance effects of self-organization
under different circumstances need more evidence and further
theory-building in order to be able to draw firm practical
recommendations for different software organizations.

ACKNOWLEDGEMENTS

This work was supported by TEKES as a part of the
Cloud Software program of Tivit (Finnish Strategic Centre for
Science, Technology and Innovation in the field of ICT). The
authors would also like to thank the case project team members
for their cooperation.

REFERENCES

[1] L. Behnke, R. Hamlin, and B. Smoak, “The evolution of employee
empowerment,” Semiconductor Manufacturing, IEEE Transactions on,
vol. 6, no. 2, pp. 143 –155, may 1993.

[2] D. Cohen, Susan; Bailey, “What Makes Teams Work: Group Effective-
ness Research from the Shop Floor to the Executive Suite,” Jounal of
Management, vol. 23, no. 3, pp. 239–290, 1997.

[3] R. Guzzo and M. Dickson, “Teams in organizations: Recent research on
performance and effectiveness,” Annual review of psychology, vol. 47,
no. 1, p. 307–338, 1996.

[4] B. D. Janz, “The best and worst of teams: self-directed work teams as
an information systems development workforce strategy,” in SIGCPR
’98: Proceedings of the 1998 ACM SIGCPR conference on Computer
personnel research. New York, NY, USA: ACM, 1998, pp. 59–67.

[5] C. Jian, “Research on Strategies and Empowerment Process to Achieve
Self-management Team,” Area, pp. 25–29, 2008.

[6] J. Underwood, M. Fitzgerald, and M. Cassidy, “Self-directed teams
in power electronics manufacturing,” in Applied Power Electronics
Conference and Exposition, 1996. APEC ’96. Conference Proceedings
1996., Eleventh Annual, vol. 1, 3-7 1996, pp. 64 –68 vol.1.

[7] J. Tata and S. Prasad, “Team Self-Management, Organizational Struc-
ture, and Judgments of Team Effectiveness,” Jounal of Managerial
Issues, vol. XVI, no. 2, pp. 248–265, 2004.

[8] N. Moe, T. Dingsøyr, and T. Dybå, “Overcoming barriers to self-
management in software teams,” IEEE Software, vol. 26, no. 6, p. 20–26,
2009.

[9] N. B. Moe, T. Dingsøyr, and E. A. Røyrvik, “Putting agile teamwork
to the test — an preliminary instrument for empirically assessing and
improving agile software development,” in Agile Processes in Software
Engineering and Extreme Programming, Pula, Sardinia, Italy, 2009.

[10] R. Hoda, J. Noble, and S. Marshall, “Organizing self-organizing teams,”
in ICSE ’10: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering. New York, NY, USA: ACM, 2010, pp.
285–294.

[11] P. Abrahamsson, “Unique infrastructure investment: Introducing the
Software Factory Concept,” Software Factory Magazine, vol. 1, pp. 2–3,
2010.

[12] R. Winter, “Self-directed work teams,” Proceedings of 1994 IEEE/SEMI
Advanced Semiconductor Manufacturing Conference and Workshop
(ASMC), vol. 00, pp. 123–125, 1994.

[13] M. Fenton-O’Creevy, “Employee involvement and the middle manager:
evidence from a survey of organizations,” Journal of Organizational
Behavior, vol. 19, no. 1, pp. 67–84, January 1998.

[14] N. Moe, T. Dingsøyr, and T. Dybå, “Understanding self-organizing teams
in agile software development,” in Software Engineering, 2008. ASWEC
2008. 19th Australian Conference on, 26-28 2008, pp. 76 –85.

[15] R. Reilly and G. Lynn, “Power and empowerment: the role of top man-
agement support and team empowerment in new product development,”
PICMET ’03: Portland International Conference on Management of
Engineering and Technology Technology Management for Reshaping the
World, 2003., pp. 282–289, 2003.

[16] C. W. Langfred, “The paradox of self-management: individual and group
autonomy in work groups,” Journal of Organizational Behavior, vol. 21,
no. 5, pp. 563–585, August 2000.

[17] H. Takeuchi and I. Nonaka, “The new new product development game,”
Harvard Business Review, vol. 64, no. 1, p. 137–146, 1986.

[18] M. Hoegl and P. Parboteeah, “Autonomy and teamwork in innovative
projects,” Human Resource Management, vol. 45, no. 1, p. 67–79, 2006.

[19] H. T. e. a. Barney, “Balancing individual and collaborative work in
agile teams,” in Agile Processes in Software Engineering and Extreme
Programming, Pula, Sardinia, Italy, 2009.

[20] N. B. Moe and A. Aurum, “Understanding Decision-Making in Agile
Software Development: A Case-study,” 2008 34th Euromicro Confer-
ence Software Engineering and Advanced Applications, pp. 216–223,
2008.



[21] R. Whitehead, Leading a Software Development Team – A Developer’s
Guide to Successfully Leading People & Projects. Addison-Wesley,
2001.

[22] M. Gagne and E. L. Deci, “Self-determination theory and work motiva-
tion,” Journal of Organizational Behavior, vol. 26, no. 4, pp. 331–362,
2005.

[23] C. Pearce, “The future of leadership: Combining vertical and shared
leadership to transform knowledge work,” Academy of Management
Executive, vol. 18, no. 1, p. 47–57, 2004.

[24] S. Nerur and V. Balijepally, “Theoretical reflections on agile develop-
ment methodologies,” Communications of the ACM, vol. 50, no. 3, p. 83,
2007.

[25] N. Moe, T. Dingsøyr, and O. Kvangardsnes, “Understanding shared
leadership in agile development: A case study,” in System Sciences, 2009.
HICSS ’09. 42nd Hawaii International Conference on, 5-8 2009, pp. 1
–10.

[26] J. Highsmith, “Retiring Lifecycle Dinosaurs – Using Adaptive Software
Development to meet the challenges of a highspeed, high-change envi-
ronment,” Software Testing and Quality Engineering, vol. May/June, p.
22–28, 2000.

[27] A. Cockburn and J. Highsmith, “Agile Software Development, the
People Factor,” Computer, vol. 34, no. 11, p. 131–133, 2001.

[28] E. Salas, D. E. Sims, and S. Burke, “Is there a ”Big Five” in Teamwork?”
Small Group Research, vol. 36, no. 5, pp. 555–599, October 2005.

[29] “Agile manifesto,” 2001. [Online]. Available:
http://www.agilemanifesto.org/

[30] K. Beck, Extreme Programming Explained: Embrace Change, 1999.
[31] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile software

development methods: Review and Analysis. Espoo, Finland: Technical
Research Centre of Finland, VTT, 2002.

[32] H. Kniberg, Scrum and XP from the Trenches. C4Media, 2007.
[33] D. Leffingwell, Scaling Software Agility: Best Practices for Large

Enterprises. Addison-Wesley Professional, 2007.
[34] S. Ambler, “Lessons in agility from Internet-based development,” IEEE

Software, vol. 19, no. 2, pp. 66–73, 2002.
[35] E. Whitworth, “Experience Report: The Social Nature of Agile Teams,”

in Agile 2008 Conference. IEEE, 2008, p. 429–435.
[36] M. Poppendieck and T. Poppendieck, Lean Software Development - An

Agile Toolkit. Addison-Wesley, 2003.
[37] F. Fagerholm, “Psychometric measurements in software development,”

Software Factory Magazine, vol. 1, no. 1, pp. 12–13, March 2010.
[38] W. T. Rupp, “Qualitative evaluation and research methods: Michael

Quinn Patton, Sage Publications, Newbury Park, CA. 1990,” Journal
of Business Research, vol. 30, no. 2, pp. 197–199, 1994.

[39] N. B. Moe and T. Dingsøyr, “Scrum and team effectiveness: Theory
and practice,” in Agile Processes in Software Engineering and Extreme
Programming, Limerick, Ireland, 2008, pp. 11–20.


